The Bishop – Phelps – Bollobás property for numerical radius in ` 1 ( C ) by Antonio
نویسنده
چکیده
We show that the set of bounded linear operators from X to X admits a Bishop–Phelps–Bollobás type theorem for numerical radius whenever X is `1(C) or c0(C). As an essential tool we provide two constructive versions of the classical Bishop–Phelps– Bollobás theorem for `1(C).
منابع مشابه
Bishop-Phelps type Theorem for Normed Cones
In this paper the notion of support points of convex sets in normed cones is introduced and it is shown that in a continuous normed cone, under the appropriate conditions, the set of support points of a bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.
متن کاملSupport functionals and their relation to the Radon-Nikodym property
In this paper, we examine the Radon-Nikodym property and its relation to the Bishop-Phelps theorem for complex Banach spaces. We also show that the Radon-Nikodym property implies the Bishop-Phelps property in the complex case. 1. Introduction. Let X be a complex Banach space and let C be a closed convex subset of X. The set of support points of C, written as supp C, is the collection of all poi...
متن کاملThe Nonlinear Separation Theorem and a Representation Theorem for Bishop-Phelps Cones
The paper presents a theorem for representation a given cone as a Bishop–Phelps cone in normed spaces and studies interior and separation properties for Bishop–Phelps cones. The representation theorem is formulated in the form of a necessary and sufficient condition and provides relationship between the parameters determining the BishopPhelps cone. The necessity is given in reflexive Banach spa...
متن کاملextend numerical radius for adjointable operators on Hilbert C^* -modules
In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.
متن کاملOn the polynomial Lindenstrauss theorem
The Bishop-Phelps theorem [1] states that for any Banach space X, the set of norm attaining linear bounded functionals is dense in X ′, the dual space of X. Since then, the study of norm attaining functions has attracted the attention of many authors. Lindenstrauss showed in [2] that there is no Bishop-Phelps theorem for linear bounded operators. Nevertheless, he proved that the set of bounded ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013